23 research outputs found

    Surface wave control for large arrays of microwave kinetic inductance detectors

    Get PDF
    Large ultra-sensitive detector arrays are needed for present and future observatories for far infra-red, submillimeter wave (THz), and millimeter wave astronomy. With increasing array size, it is increasingly important to control stray radiation inside the detector chips themselves, the surface wave. We demonstrate this effect with focal plane arrays of 880 lens-antenna coupled Microwave Kinetic Inductance Detectors (MKIDs). Presented here are near field measurements of the MKID optical response versus the position on the array of a reimaged optical source. We demonstrate that the optical response of a detector in these arrays saturates off-pixel at the ∌−30\sim-30 dB level compared to the peak pixel response. The result is that the power detected from a point source at the pixel position is almost identical to the stray response integrated over the chip area. With such a contribution, it would be impossible to measure extended sources, while the point source sensitivity is degraded due to an increase of the stray loading. However, we show that by incorporating an on-chip stray light absorber, the surface wave contribution is reduced by a factor >>10. With the on-chip stray light absorber the point source response is close to simulations down to the ∌−35\sim-35 dB level, the simulation based on an ideal Gaussian illumination of the optics. In addition, as a crosscheck we show that the extended source response of a single pixel in the array with the absorbing grid is in agreement with the integral of the point source measurements.Comment: accepted for publication in IEEE Transactions on Terahertz Science and Technolog

    Lens Absorber Coupled MKIDs for Far Infrared Imaging Spectroscopy

    Full text link
    Future generation of astronomical imaging spectrometers are targeting the far infrared wavelengths to close the THz astronomy gap. Similar to lens antenna coupled Microwave Kinetic Inductance Detectors (MKIDs), lens absorber coupled MKIDs are a candidate for highly sensitive large format detector arrays. However, the latter is more robust to misalignment and assembly issues at THz frequencies due to its incoherent detection mechanism while requiring a less complex fabrication process. In this work, the performance of such detectors is investigated. The fabrication and sensitivity measurement of several lens absorber coupled MKID array prototypes operating at 6.98 and 12 THz central frequencies is on-going.Comment: 2 pages, 2 figures, IRMMW-THz conference pape

    Eliminating stray radiation inside large area imaging arrays

    Full text link
    With increasing array size, it is increasingly important to control stray radiation inside the detector chips themselves. We demonstrate this effect with focal plane arrays of absorber coupled Lumped Element microwave Kinetic Inductance Detectors (LEKIDs) and lens-antenna coupled distributed quarter wavelength Microwave Kinetic Inductance Detectors (MKIDs). In these arrays the response from a point source at the pixel position is at a similar level to the stray response integrated over the entire chip area. For the antenna coupled arrays, we show that this effect can be suppressed by incorporating an on-chip stray light absorber. A similar method should be possible with the LEKID array, especially when they are lens coupled.Comment: arXiv admin note: substantial text overlap with arXiv:1707.0214

    Proof-of-Concept Demonstration of Vector Beam Pattern Measurements of Kinetic Inductance Detectors

    Get PDF
    We present results from the first vector beam pattern measurement ofmicrowave kinetic inductance detectors (MKIDs). Vector beam patterns require sampling of the E-field of the receiver in both amplitude and phase. MKIDs are inherently direct detectors and have no phase response to incoming radiation. We map the amplitude and phase patterns of the detector beam profile by adapting a two-source heterodyne technique. Our testing strategy recovers the phase information by creating a reference signal to trigger data acquisition. The reference is generated by mixing the slightly offset low-frequency signals from the output of the two synthesizers used to drive the submillimeter sources. The key requirement is that the time-series record always begins at the same set phase of the reference signal. As the source probe is scanned within the receiver beam, the wavefront propagation phase of the receiver changes and causes a phase offset between the detector output and reference signals. We demonstrated this technique on the central pixel of a test array operating at 350 GHz. This methodology will enable vector beam pattern measurements to be performed on direct detectors, which have distinct advantages reducing systematic sources of error, allowing beam propagation, and removing the far-field measurement requirement such that complicated optical systems can be measured at a point that is easily accessible, including the near field

    An Ultra-Wideband Leaky Lens Antenna for Broadband Spectroscopic Imaging Applications

    Full text link
    We present the design, fabrication and characterisation of a broadband leaky lens antenna for broadband, spectroscopic imaging applications. The antenna is designed for operation in the 300-900 GHz band. We integrate the antenna directly into an Al-NbTiN hybrid MKID to measure the beam pattern and absolute coupling efficiency at three frequency bands centred around 350, 650 and 850 GHz, covering the full antenna band. We find an aperture efficiency ηap≈0.4\eta_{ap} \approx 0.4 over the whole frequency band, limited by lens reflections. We find a good match with simulations for both the patterns and efficiency, demonstrating a 1:3 bandwidth in the sub-mm wavelength range for future on-chip spectrometers.Comment: Accepted for Publication at IEEE Transactions on Antennas and Propagatio

    Resolving Power of Visible to Near-Infrared Hybrid ÎČ\beta-Ta/NbTiN Kinetic Inductance Detectors

    Full text link
    Kinetic Inductance Detectors (KIDs) are superconducting energy-resolving detectors, sensitive to single photons from the near-infrared to ultraviolet. We study a hybrid KID design consisting of a beta phase tantalum (ÎČ\beta-Ta) inductor and a NbTiN interdigitated capacitor (IDC). The devices show an average intrinsic quality factor QiQ_i of 4.3×105\times10^5 ±\pm 1.3 ×105\times10^5. To increase the power captured by the light sensitive inductor, we 3D-print an array of 150×\times150 ÎŒ\mum resin micro lenses on the backside of the sapphire substrate. The shape deviation between design and printed lenses is smaller than 1ÎŒ\mum, and the alignment accuracy of this process is ÎŽx=+5.8±0.5\delta_x = +5.8 \pm 0.5 ÎŒ\mum and ÎŽy=+8.3±3.3\delta_y = +8.3 \pm 3.3 ÎŒ\mum. We measure a resolving power for 1545-402 nm that is limited to 4.9 by saturation in the KID's phase response. We can model the saturation in the phase response with the evolution of the number of quasiparticles generated by a photon event. An alternative coordinate system that has a linear response raises the resolving power to 5.9 at 402 nm. We verify the measured resolving power with a two-line measurement using a laser source and a monochromator. We discuss several improvements that can be made to the devices on a route towards KID arrays with high resolving powers.Comment: 11 pages, 9 Figues, Journal Pape

    First light demonstration of the integrated superconducting spectrometer

    Full text link
    Ultra-wideband 3D imaging spectrometry in the millimeter-submillimeter (mm-submm) band is an essential tool for uncovering the dust-enshrouded portion of the cosmic history of star formation and galaxy evolution. However, it is challenging to scale up conventional coherent heterodyne receivers or free-space diffraction techniques to sufficient bandwidths (≄\geq1 octave) and numbers of spatial pixels (>10210^2). Here we present the design and first astronomical spectra of an intrinsically scalable, integrated superconducting spectrometer, which covers 332-377 GHz with a spectral resolution of F/ΔF∌380F/\Delta F \sim 380. It combines the multiplexing advantage of microwave kinetic inductance detectors (MKIDs) with planar superconducting filters for dispersing the signal in a single, small superconducting integrated circuit. We demonstrate the two key applications for an instrument of this type: as an efficient redshift machine, and as a fast multi-line spectral mapper of extended areas. The line detection sensitivity is in excellent agreement with the instrument design and laboratory performance, reaching the atmospheric foreground photon noise limit on sky. The design can be scaled to bandwidths in excess of an octave, spectral resolution up to a few thousand and frequencies up to ∌\sim1.1 THz. The miniature chip footprint of a few cm2\mathrm{cm^2} allows for compact multi-pixel spectral imagers, which would enable spectroscopic direct imaging and large volume spectroscopic surveys that are several orders of magnitude faster than what is currently possible.Comment: Published in Nature Astronomy. SharedIt Link to the full published paper: https://rdcu.be/bM2F

    Exploring Cosmic Origins with CORE: Cosmological Parameters

    Get PDF
    We forecast the main cosmological parameter constraints achievable with theCORE space mission which is dedicated to mapping the polarisation of the CosmicMicrowave Background (CMB). CORE was recently submitted in response to ESA'sfifth call for medium-sized mission proposals (M5). Here we report the resultsfrom our pre-submission study of the impact of various instrumental options, inparticular the telescope size and sensitivity level, and review the great,transformative potential of the mission as proposed. Specifically, we assessthe impact on a broad range of fundamental parameters of our Universe as afunction of the expected CMB characteristics, with other papers in the seriesfocusing on controlling astrophysical and instrumental residual systematics. Inthis paper, we assume that only a few central CORE frequency channels areusable for our purpose, all others being devoted to the cleaning ofastrophysical contaminants. On the theoretical side, we assume LCDM as ourgeneral framework and quantify the improvement provided by CORE over thecurrent constraints from the Planck 2015 release. We also study the jointsensitivity of CORE and of future Baryon Acoustic Oscillation and Large ScaleStructure experiments like DESI and Euclid. Specific constraints on the physicsof inflation are presented in another paper of the series. In addition to thesix parameters of the base LCDM, which describe the matter content of aspatially flat universe with adiabatic and scalar primordial fluctuations frominflation, we derive the precision achievable on parameters like thosedescribing curvature, neutrino physics, extra light relics, primordial heliumabundance, dark matter annihilation, recombination physics, variation offundamental constants, dark energy, modified gravity, reionization and cosmicbirefringence. (ABRIDGED
    corecore